dataset
- class stardust.ms.ms.MS[source]
Bases:
object
- export_dataset(**kwargs)[source]
Export ms data and automatically detach consecutive frames
- Return type:
Dict
- Args:
- dataset_id: int
Data set ID
- version_num: int
Version number
- slice_id: int
Slice ID
- page_no: int
Slice paging
- page_size: int
Amount of data per page
- Returns: Dict
Derived data slicing
- Examples:
from stardust.ms.ms import MS frame_gen = MS().export_dataset( dataset_id=351787480925605888, version_num=18 ) for frame in frame_gen: pass
- create_dataset(**kwargs)[source]
创建切片
- Return type:
Dict
- Args:
- dataset_id: int
Data set ID
- data_instance_ids: int
Data instance ID
- name: int
Slice name
- description: int
Slice description
- Returns: Dict
Create slice results
- Examples:
from stardust.ms.ms import MS resp = MS().create_dataset( dataset_id=352036425840988160, data_instance_ids=[351787490434093056], name="Slice 1", description="description" ) print(resp)
- import_dataset_ms(**kwargs)[source]
Import data set
- Return type:
Dict
- Args:
- dataset_id: int
Data set ID
- model_id: int
Model ID
- version_num: int
Version number
- annotation_result: List
Result of pretreatment
- Returns: Dict
Import result
- Examples:
from stardust.ms.ms import MS resp = MS().import_dataset_ms( dataset_id=351787480925605888, model_id="404", version_num=1, annotation_result=[ { "annotation": { "annotations": [ { "key": "3D框", "label": "3D框", "type": "slotChildren", "slotsChildren": [...] } ], "operators": [...] }, "dataInstanceId": "351787490434093056" }, { "annotation": { "annotations": [...], "operators": [...] }, "dataInstanceId": "351787490622836736" } ] ) print(resp)